Paradoxes of Quantum Physics, Bell’s Theorem, and What Do Experiments Tell Us

Our previous article “Wonders and Mysteries of Quantum Physics” discusses how Quantum Physics (QP) [1] completely revolutionized our industrial world and our daily lives since its discovery about 100 years ago. Everyday we utilize a variety of products based on Quantum Physics. [2] That article also pointed out that QP introduced many mysteries, such as particle-wave duality, the act of observation can change what we are observing, uncertainty principle, our physical laws can only give us a probabilistic, and not a deterministic, prediction of the future.

These mysteries, especially the probabilistic interpretation, or a superposition of states, led many people to question from the beginning of QP around the mid 1920s whether there is a more fundamental theory than QT that would lead to a deterministic prediction. The most famous critic was Albert Einstein, who made critical comments such as “does the moon exist even when no one is looking at it” and “God doesn’t play dice.” Many people thought that there are probably physical variables that we are not aware of. Because these variables could have different values, and if we can determine their values, then we would have a deterministic prediction.

These are known as “hidden variable” theories. Even though the usefulness of QT became more and more apparent as more and more products based on QT permeated our lives, this debate never went away, partially because no one could think of any experiment that could be done to differentiate the predictions of QT and the predictions of hidden variable theories.

That ended in 1964 when the Irish physicist James S. Bell proved a remarkable but simple theorem (now known as Bell’s Theorem) that shows that Quantum Theory and local hidden variable theories can lead to different experimental results. [3] Therefore, this is no longer an academic debate, but a debate that can be decided by experiments, which is the fundamental concept behind physics. Before we discuss Bell’s Theorem and the subsequent experimental results, we need to make a digression to discuss two precursors of Bell’s Theorem.

Read More »

Mindfulness, Children’s Social and Emotional Health, and School Initiative

Recently, a number of schools has stressed the importance of the need to focus on the social and emotional health of young students, especially in the current environment of epidemics, school closings, racial conflicts, social unrest, layoffs, and poverty. Several of these developments such as epidemics, school closings, and racial conflicts affect them and their schools directly, and several others such as social unrest, layoffs, and poverty, are experienced by their parents but the impacts also affect them.

One approach adopted by some schools to help young students to handle social and emotional health problems that may arise from this environment is the focus on mindfulness. In this article, we explain what mindfulness is, and in what ways Taiji can contribute to mindfulness.

Read More »

Wonders and Mysteries of Quantum Physics

The impact of quantum physics (also known as quantum mechanics or quantum theory) since its introduction almost 100 years ago has had large and deep impacts on almost all aspects of our lives, including business lives, personal lives, and war and peace between nations. Our everyday usage of electronic appliances, fluorescent light bulbs, televisions, computers, digital cameras, cell phones, Internet, GPS, lasers, electronic microscopes, MRI scans, modern military aircrafts, nuclear submarines, nuclear weapons, etc. all make use of quantum physics.

Quantum physics differs significantly from classical physics. Classical physics describe the physical laws governing the behavior of ordinary size objects that we deal with everyday in our lives – objects like a baseball, a bullet, a musical instrument like a violin, water waves on a beach or in an ocean. Quantum physics describe the physical laws governing the behavior of very small objects that we have to deal with in the subatomic world – objects like an electron, a proton, a neutron, a photon (the constituents of light). This article discusses some of the largest differences between quantum physics and classical physics, and the associated wonders and mysteries of quantum physics.

Read More »

Subscribe to RSS Feed